
Real-time Collision Detection between General SDFs
Pengfei Liua,1, Yuqing Zhanga,1, He Wangb, Milo K. Yipc, Elvis S. Liuc and Xiaogang Jina,∗

aState Key Lab of CAD&CG, Zhejiang University, China
bUniversity of Leeds, United Kingdom
cMoreFun Studios, Tencent, China

A R T I C L E I N F O
Keywords:
Collision Detection
Sign Distance Function
Optimization
Physically Based Animation

A B S T R A C T
Signed Distance Fields (SDFs) have found widespread utility in collision detection applications
due to their superior query efficiency and ability to represent continuous geometries. However,
little attention has been paid to calculating the intersection of two arbitrary SDFs. In this paper,
we propose a novel, accurate, and real-time approach for SDF-based collision detection between
two solids, both represented as SDFs. Our primary strategy entails using interval calculations
and the SDF gradient to guide the search for intersection points within the geometry. For ar-
bitrary objects, we take inspiration from existing collision detection pipelines and segment the
two SDFs into multiple parts with bounding volumes. Once potential collisions between two
parts are identified, our method quickly computes comprehensive intersection information such
as penetration depth, contact points, and contact normals. Our method is general in that it accepts
both continuous and discrete SDF representations. Experiment results show that our method can
detect collisions in high-precision models in real time, highlighting its potential for a wide range
of applications in computer graphics and virtual reality.

1. Intrduction
SDFs (Frisken et al., 2000) have advantages in applications such as 3D reconstruction, surface fitting (Flöry and

Hofer, 2010), sculpting, rendering, path planing (Chen et al., 2018) and collision detection due to their desirable
characteristics, such as the analytic forms of implicit surface representation (Quilez, 2013) or neural networks (Park
et al., 2019; Davies et al., 2020; Sitzmann et al., 2020; Tan et al., 2022), as well as their efficient O(1) complexity
for distance queries. As a result, they have emerged as one of the most prominent unifying geometry representations
in a wide range of contexts, particularly in collision detection (CD), which is a fundamental problem in many fields.
Analytic SDFs are even used by some developers to model entire scenes (Quilez, 2019).

SDFs allow us to query the minimum Euclidean distance between a point and the surface. As a result, collision
detection algorithms for SDFs have previously focused on detecting collisions between SDFs and explicit represen-
tations, as characterized by the two approaches described below. The first is point sampling of the geometry prior to
detection, followed by checking each point SDF value to determine the status of point-SDF overlap (Fuhrmann et al.,
2003; Guendelman et al., 2003). Another method is to find the point on a triangle with the smallest SDF value in
order to determine the status of triangle-SDF overlap (Macklin et al., 2020). While methods for detecting point-SDF
and triangle-SDF collisions have been introduced and widely used in particle systems and physical simulations, little
research has been conducted on collision detection algorithms between two arbitrary SDFs.

We discuss SDF-SDF collision detection for various SDF representations in this paper. SDF can be represented
using a variety of techniques, such as analytic distance functions, voxels, neural networks, and others. The analytic
distance function stands out among these methods due to its accurate representation and easy derivation of SDF values
through fast computation. For certain shapes represented by distance functions, such as spheres and ellipsoids, fast
and accurate collision detection methods already exist (Dube et al., 2011; Jia et al., 2011; Brozos-Vázquez et al., 2019,
2022). These methods, however, are limited to specific shapes or classes of shapes and cannot easily be extended to
accommodate general analytic distance functions. To address this issue, we propose using interval arithmetic (Moore
and Yang, 1996) to determine the range of SDF values within a region. This method enables fast intersection testing
of SDF represented by the analytic distance function.

∗Corresponding author
jin@cad.zju.edu.cn (X. Jin)
http://www.cad.zju.edu.cn/home/jin/ (X. Jin)

1Indicates equal contribution

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 1 of 15

http://www.cad.zju.edu.cn/home/jin/

Real-time Collision Detection between General SDFs

Preprocessing Collision detection Contact generation

Automatic SDF decomposition

Model sampling

Cuboid abstraction

Cuboid expansion

Signed distance fields (SDFs)
and their gradient

Axis-aligned bounding box
(AABB) generation

B
road to narrow

AABB collision detection

Construct octree to find
the OBBs’ intersection

SDFs collision detection

Gradient descent to
find SDFs’ intersection

A
B

Intersection

Gradient descent

A’s contact point B’s contact point

A’s contact normal B’s contact normal

Detection points generation

Traverse the SDF to
find the convex part

structural
shape

irregular
shape

Figure 1: The pipeline of general SDFs collision detection in our method. We decompose the object in the preprocessing
stage, keep the SDF within the specified bounds. In the collision detection stage, an octree subdivision algorithm is used
to determine the intersection region of OBBs for simple and structurally regular objects, whereas irregularly shaped objects
require a traversal of the SDF to identify convex protrusions on the object surface. Then, using gradient descent, we
generate detection points and find intersection regions of SDFs. Finally, contact information such as penetration depth,
contact points, and contact normals are generated.

Despite its advantages, the analytic distance function cannot represent arbitrary shapes, for which voxel or neural
network representations are frequently preferred. As a result, a general collision detection method between general
SDF representations is also extremely important. The following issues arise when detecting collisions with general
SDFs. First, determining the range of SDF values in a given region efficiently for SDFs represented by voxels and
neural networks is a significant challenge. A method for querying the intersection region of general neural implicit
surfaces was proposed by Nicholas et al (Sharp and Jacobson, 2022). However, the computational speed of this method
(80ms per query) is still insufficient for real-time applications. Second, because the intersection shape is arbitrary, it
is necessary to compute the exact intersection. Gradient-based methods are fast numerically, but they are prone to
getting stuck in local minima due to the concave nature of object geometries. Global methods, on the other hand, such
as simulated annealing, can avoid local minima but are significantly slower. Third, while SDFs can provide detailed
contact information, calculating specific indicators such as penetration depth and contact point locations remains dif-
ficult. Finally, there has been little comprehensive research into the optimal trade-off between accuracy and speed for
SDFs. This emphasizes the need for further investigation of the problem.

To address the aforementioned challenges, we present a new real-time CD method between SDFs of analytic
distance functions, as well as a dual-gradient-based approach for rapid collision detection and computation of con-
tact/intersection information between two arbitrary objects represented by SDFs. For analytic distance functions, we
use octrees for rapid identification of potential collisions to improve the efficiency of the collision detection algorithm.
For general SDFs, we create oriented bounding boxes in order to segment the given objects into multiple parts. This
object segmentation operation significantly reduces the issue of local minima in our gradient-based method. In addi-
tion, we use the analytical distance functions of bounding boxes to quickly identify potential collision parts and our
dual-gradient approach to determine key contact points. Fig. 1 depicts the framework of general SDFs collision de-
tection. We show that our method is both accurate in detecting collisions and fast enough for real-time applications
through extensive evaluation and comparison. Our SDF-SDF collision detection method provides an efficient and
accurate solution for a wide range of applications. In summary, our paper makes the following contributions:

• The first real-time and accurate general SDF-SDF collision detection method.
• A novel method for testing the intersection of analytic distance functions.
• An accurate method for estimating contact information for SDF-SDF collision response stages.
We compare our method to mesh-mesh and SDF-mesh methods. When it comes to collision detection for general

SDFs, our method is comparable to and complements these methods. Furthermore, when SDFs are expressed analyt-
ically, our method outperforms the competition. Our method may have interesting potential applications when all of
the scenes are represented by closed-form SDFs (Quilez, 2019).
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 2 of 15

Real-time Collision Detection between General SDFs

2. Related Work
2.1. Collision Detection

Collision detection is a fundamental problem in computer graphics, of which many algorithms have been proposed
for different objects’ representations and application scenarios (Gilbert et al., 1988; Montanari et al., 2017; Ferguson
et al., 2021; Wang et al., 2021; Macklin et al., 2020; Zesch et al., 2023). For complex objects represented by polygonal
meshes, the basic problem of collision detection is to determine whether there exist colliding polygons or not. There
are two main optimization ideas: one is to cull polygons that are improbable to collide (Zheng and James, 2012; Wang,
2014) and the other is to speed up the collision detection of polygons (Du et al., 2017). Since polygonal meshes
only have surface information, they can’t handle penetration between objects. While Continuous Collision Detection
(CCD) can help to prevent penetration and increase stability, its high computational cost will impose a strain on real-
time applications.

Another common object representation in collision detection is implicit surfaces, which include algebraic sur-
faces, SDFs, constructive solid geometry (Laidlaw et al., 1986; Sharma et al., 2018), and neural implicit representa-
tions (Sharp and Jacobson, 2022). Most implicit surface methods turn the collision detection problem into determining
whether there are intersecting regions or intersecting points. Although accurate intersection points can be calculated
analytically for primitives (Choi et al., 2006; Ketchel and Larochelle, 2006; Dube et al., 2011), it is difficult to find
intersection regions of general SDFs. Sharp et al. (Sharp and Jacobson, 2022) provide an interval query scheme for
neural implicit surfaces. It can be used in intersection tests; however, it has a poor time performance and cannot gen-
erate contact information. Calculating the minimum distance between objects can also help with collision detection.
Fernandez et al. (Fernández-Layos and Merchante, 2024) developed an algorithm to determine the minimum distance
and penetration depth between two convex SDF objects. However, this method does not provide a comprehensive
analysis of SDF collisions between general objects. In comparison to earlier work, our method can quickly find
intersecting regions and provide contact information for collision response.
2.2. SDF

SDFs can be defined as a function 𝜙(𝐱) ∶ 𝑅3 → 𝑅 that attributes to each point 𝐱 its signed distance 𝜙(𝐱) to the
closest surface point. 𝜙(𝐱) is positive if 𝐱 is outside the shape and negative if it is inside. Thanks to their strong
shape representation capability and distance query efficiency, SDFs have been widely used recently in fields such as
3D modeling (Chen and Zhang, 2019; Li et al., 2022), 3D reconstruction (Chibane et al., 2020; Stier et al., 2021; Yao
et al., 2021; Ortiz et al., 2022; Driess et al., 2022), and rendering (Takikawa et al., 2021; Jiang et al., 2020). SDF can
not only be discretized for storage on a grid or volume texture, but it can also be encoded by a neural network (Park
et al., 2019; Sitzmann et al., 2020; Davies et al., 2020) and retain its continuity. In our method, the representation form
is irrelevant as long as the gradient information of SDF is provided.

SDFs are also useful for collision detection because they can instantly provide distance from any point in space to
the object’s surface, regardless of geometric complexity, and they allow the collision reaction to be easily computed
alongside detection. SDFs have previously been used to identify collisions not just between rigid bodies (Xu and
Barbic, 2014; Koschier et al., 2017; Macklin et al., 2020), but also in rigid-deformable simulations (Fuhrmann et al.,
2003; Teschner et al., 2005). Xu et al. (Xu and Barbič, 2016) present a fast CCD algorithm for SDFs. It has been
demonstrated that it can resolve collisions with intricate contact at high speeds. The preceding approaches all share
the goal of detecting collisions between points and SDFs. However, sampling points directly on the object’s surface
may miss edge or face intersections with SDFs in particle-based simulations, resulting in penetration at some sharp
features, especially when the number of sampling points is insufficient. Macklin et al. (Macklin et al., 2020) extend
SDF-based collision detection to polygon meshes; they employ a GPU axis-aligned bounding box (AABB) tree to cull
triangles and perform a local optimization loop per triangle to find the closest point to the SDFs. Although SDF has
been widely used in collision detection, there is currently no research on real-time collision detection between general
SDFs.

3. Intersection of Analytic Distance Functions
We begin with SDFs represented by analytic distance functions. In our approach, we use interval arithmetic to

detect collisions between two distance functions. To demonstrate the application of interval calculations for collision
detection, we use the distance function of a cuboid as an example. Given a cuboid (an axis-aligned unit cube) centered

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 3 of 15

Real-time Collision Detection between General SDFs

(b)(a)

Figure 2: An illustration of intersecting regions in analytic distance functions. The intersection of two cubes (a) and two
hearts (b). The intersection of the front view is on the left. The green wireframe represents the AABB intersection region.
The octree structure of the intersection region is represented by the lime green wireframes.

at the origin with a scaling factor of 𝐬 ∈ ℝ3, we define its analytic distance function 𝜙𝑐(𝐩) as follows:
𝜙𝑐(𝐩) = ‖max(𝐪, 0)‖2 + min(max(𝐪𝑥,max(𝐪𝑦,𝐪𝑧)), 0), (1)
𝐪 = |𝐩| − 1

2
𝐬, (2)

where 𝐩 is a point in space and 𝐬 is the length, width, and height of the cuboid.
In a coordinate frame, a region can be expressed as interval vectors like:
𝑅 = {

[

𝑥−, 𝑥+
]

,
[

𝑦−, 𝑦+
]

,
[

𝑧−, 𝑧+
]

}. (3)
where the positive and negative subscripts indicate the upper and lower bounds of the interval vector. Recognizing
intervals as an extension of the real number system, a real number 𝑥 can be represented as an interval [𝑥,𝑥]. To distin-
guish the calculation from real numbers, we use Max and Min to represent the operation of taking the maximum and
minimum interval. Referring to (Moore and Yang, 1996; Stol and De Figueiredo, 1997), the basic interval operation
rules for interval calculations are as follows. Interval arithmetic operations are defined by:

[

𝑎−, 𝑎+
]

+
[

𝑏−, 𝑏+
]

=
[

𝑎− + 𝑏−, 𝑎+ + 𝑏+
]

,
[

𝑎−, 𝑎+
]

−
[

𝑏−, 𝑏+
]

=
[

𝑎− − 𝑏+, 𝑎+ − 𝑏−
]

,
[

𝑎−, 𝑎+
]

∗
[

𝑏−, 𝑏+
]

=
[

min(𝑎−𝑏−, 𝑎−𝑏+, 𝑎+𝑏−, 𝑎+𝑏+), max(𝑎−𝑏−, 𝑎−𝑏+, 𝑎+𝑏−, 𝑎+𝑏+)
]

.

Max and Min operations are defined by:
Max(

[

𝑎−, 𝑎+
]

,
[

𝑏−, 𝑏+
]

) =
[

max(𝑎−, 𝑏−),max(𝑎+, 𝑏+)
]

,

Min(
[

𝑎−, 𝑎+
]

,
[

𝑏−, 𝑏+
]

) =
[

min(𝑎−, 𝑏−),min(𝑎+, 𝑏+)
]

.

The absolute value and square root of [𝑎−, 𝑎+
] are defined by:

|

[

𝑎−, 𝑎+
]

| =
{ [

min(|𝑎−|, |𝑎+|),max(|𝑎−|, |𝑎+|)
]

, 𝑎− ∗ 𝑎+ > 0
[

0,max(|𝑎−|, |𝑎+|)
]

, otherwise
√

[

𝑎−, 𝑎+
]

=

⎧

⎪

⎨

⎪

⎩

[] , 𝑎+ < 0
[

0,
√

𝑎+
]

, 𝑎− ≤ 0
[

√

𝑎−,
√

𝑎+
]

. otherwise
In this sense, given any region 𝑅𝑝 in 3D space, we can get the distance range from points in 𝑅𝑝 to the cuboid. The
distance bounds are defined as 𝑑min and 𝑑max:

[𝑑min, 𝑑max] = 𝜙𝑐(𝑅𝑝), (4)
𝜙𝑐(𝑅𝑝) = ‖Max(𝑅𝑞 , 0)‖2 +Min(Max(𝑅𝑞

𝑥,Max(𝑅𝑞
𝑦, 𝑅

𝑞
𝑧)), 0), (5)

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 4 of 15

Real-time Collision Detection between General SDFs

𝑅𝑞 = |𝑅𝑝
| − 1

2
𝐬. (6)

Algorithm 1 describes the entire process of computing the intersection region between two cuboids, 𝐶𝑎 and 𝐶𝑏,which are represented by their respective analytical distance functions, 𝜙𝐶𝑎
and 𝜙𝐶𝑏

. The detection region is the
intersection region of two cubes’ AABBs. The detection region 𝑅𝑝 is partitioned using an octree, and its subregions
are maintained by a queue. We can use the octree’s nodes to fit the intersecting regions of the two cuboids with varying
degrees of accuracy by varying the depth of the octree. Partitioning ends when a region is entirely within or entirely
outside of both cuboids. When the upper bounds of the distance intervals 𝑑𝑎max and 𝑑𝑏max are both negative, a region is
considered to be entirely within the two cuboids. When the lower bounds of the distance intervals 𝑑𝑎min and 𝑑𝑏min are
both positive, a region is considered to be entirely outside the two cuboids.

The same interval arithmetic operations can be applied to any analytical SDF equation, such as a heart, which is
represented by the following analytical equation:

𝑥2 + (4 + 1.2𝑦 − |𝑥|
√

20 − |𝑥|
15

)2 + (𝑧 −
𝑦
15

)2 − 152 = 0. (7)

The results of this method are shown in Fig. 2 with the octree depth set to 10. The minimum size of the intersection
region we can detect is determined by the depth of the octree. Deeper octrees can detect smaller intersecting regions,
but with more cost.

Algorithm 1: The analytic distance function intersection test algorithm
input : 𝜙𝐶𝑎

, 𝜙𝐶𝑏
, 𝑅𝑝, and the depth of octree 𝑙𝑒𝑣𝑒𝑙

output: The intersection region of analytic distance function 𝑅𝐼

1 𝑄 ←push(𝑅𝑝,level);
2 while 𝑄 is not empty do
3 𝑅𝑞 ← 𝑄.front();
4 [𝑑𝑎min, 𝑑𝑎max] = 𝜙𝐶𝑎

(𝑅𝑞);
5 if 𝑑𝑎min > 0 then
6 continue;
7 [𝑑𝑏min, 𝑑𝑏max] = 𝜙𝐶𝑏

(𝑅𝑞);
8 if 𝑑𝑏min > 0 then
9 continue;

10 if 𝑑𝑎max ≤ 0 and 𝑑𝑏max ≤ 0 then
11 𝑅𝐼 ← push(𝑅𝑞)
12 else
13 𝑙 ← getOctreeLevel(𝑅𝑞);
14 if 𝑙 > 0 then
15 𝑅𝑠𝑢𝑏 ← 𝑜𝑐𝑡𝑟𝑒𝑒(𝑅𝑞 ,𝑙 - 1);
16 𝑄 ← push(𝑅𝑠𝑢𝑏,𝑙 − 1);

4. Intersection of General SDFs
While analytical distance functions can represent some specific geometric shapes, they have difficulty representing

more general objects. In practice, voxels and neural networks are typically used to represent SDFs. Our approach, on
the other hand, introduces a dual-gradient-based method for fast collision detection between two SDFs. This method
effectively addresses the limitations of existing techniques, allowing for the detection of a wide range of objects while
maintaining the speed required for real-time applications.

As shown in Fig. 1, our framework is divided into three stages. First, we decompose an arbitrary SDF into several
parts by building an Oriented Bounding Box (OBB) for each part. Further, we use an AABB to completely contain
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 5 of 15

Real-time Collision Detection between General SDFs

Figure 3: Pipeline for decomposition of SDFs. We first sample points on the model’s surface and calculate their corre-
sponding normals (left). Then, we employ Cuboid abstraction network (Yang and Chen, 2021) to approximate parts of the
model to cuboids (middle). After that, we expend cuboids to cover the whole model using the assigned matrix (right).

it. The decomposition method is described in Section 4.1. In the collision detection stage, we first reduce the number
of possible pairs of AABBs in a collision, similar to the broad-phase collision detection in traditional methods. In the
narrow phase, given the two colliders 𝐶𝐴 and 𝐶𝐵 , we define their SDFs as 𝜙𝐴 and 𝜙𝐵 .

When their AABBs intersect, we use the gradient decent to find the intersecting region. In Section 4.2, we present
two approaches for determining the initial positions of gradient decent in various scenarios. In Section 4.3, we describe
our new gradient descent method for identifying whether there exists a point in the intersecting region. Finally, in the
contact extraction stage, we get the deepest penetration points with their separation normals in 𝐶𝐴 and 𝐶𝐵 . More
details are presented in Section 4.4.
4.1. Automatic Decomposition of SDFs

To improve detection efficiency, an object is typically segmented into multiple parts, each of which is detected
independently in collision detection. This strategy is also used in our approach. Because of its high computational
speed, we use a gradient-based approach. Gradient-based methods, on the other hand, can be vulnerable to local
minima when dealing with two arbitrary SDFs. Using oriented bounding boxes to divide an SDF into multiple parts is
mathematically equivalent to dividing a non-convex optimization problem into several simpler problems. This method
aids in avoiding local minima and reduces complexity.

Binding bounding boxes to objects is a time-consuming and skill-dependent task. Unlike discrete geometries (Mamou
et al., 2016), there is currently no algorithm which is designed for dividing SDFs into multiple parts. Therefore, a
pipeline for automatically decomposing an SDF is designed as follows. First, we conduct a dense and uniform sam-
pling of the space, recording the value of SDF. Then, we select points on the input object’s surface (with a zero SDF
value) and calculate their normals. The number of sampling points depends on the geometry of the object and the
input of a neural network used for cuboid shape abstraction. After that, the unsupervised cuboid shape abstraction
network (Yang and Chen, 2021) is employed to embed the input 3D points into a latent code and decode it into a set of
parametric cuboids {𝐶𝑖}𝑖=1,...,𝑀 . Each cuboid 𝐶 can approximate a part of the original model and it is parameterized
by a translation vector 𝐭 ∈ 𝑅3 , a scale vector 𝐬 ∈ 𝑅3, and a quaternion 𝐪 ∈ 𝑅4 representing the 3D orientation. For
those points that are not inside any cuboid, we finally select the cube where the point is most likely to be located and
enlarge the cube to exactly include that point. As shown in Fig. 3, the whole pipeline can ensure that the cuboids can
totally contain their corresponding parts.

Although the automatically constructed oriented bounding boxes are sometimes not tight, they give a reference
solution and are proven to be effective in our experiments. Artifacts caused by sampling can easily be mitigated by
increasing the number of sampled points.
4.2. Detection Points Selection

We can determine whether two objects intersect by examining whether a detection point can be moved along the
SDF gradient to a position inside both objects. If the intersection region is singular and fully convex, successful de-
tection can be accomplished with only one detection point and a carefully chosen initial position. However, complex
geometries of colliding objects can result in multiple and irregular intersection regions, as shown in Fig. 4(a), neces-
sitating the use of multiple detection points to avoid local optima. Furthermore, the initial detection point positions
must be carefully chosen, as shown in Fig. 4(b).

To address this issue, we choose multiple initial detection point positions in the intersection region of OBBs. The
method outlined in Section 3 provides information about the intersection region of OBBs using an octree. In our
approach, the center points of the region, defined by octree nodes, serve as the candidate detection points.
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 6 of 15

Real-time Collision Detection between General SDFs

end
0x

end
1x

start
0x

start
1x

startx
endx

miss

(a) (b)

Figure 4: This figure shows two cases where detection fails. The detection point is first projected onto the surface of an
object, then moved along the gradient of another object until it reaches the area where the objects intersect. (a) When
multiple intersection regions are present, using only one detection point may result in missed collisions. (b) The importance
of selecting the initial position of the detection point with care. Detection point x𝑠𝑡𝑎𝑟𝑡0 , in particular, becomes stuck in a
local minimum and fails to reach the true intersection region, whereas x𝑠𝑡𝑎𝑟𝑡1 successfully identifies the collision.

Figure 5: The detection points generated at convex protrusions on the surface of complex geometries with irregular shapes
are shown in the left and middle columns. The collision detection results using these detection points are displayed in the
right column.

While increasing the depth of an octree reduces the likelihood of missed detections, constructing large octrees
solely for the purpose of locating small intersecting regions is ineffective. This is especially true for objects with
uneven surfaces, which are difficult to decompose into multiple parts using OBBs. In such cases, We propose that
the initial positions of detection points on the object’s surface be pre-selected prior to implementing SDF collision
detection. This strategy proves more effective in detecting objects with intricate geometries and irregular surfaces,
such as shells.

Certain constraint conditions are imposed when selecting detection points on an object’s surface to ensure that at
least one detection point is initialized in each surface protrusion. To begin, the selected position must have an SDF
value less than a pre-defined boundary value, ensuring that the detection points are within the object. Second, when
querying the SDF values of the six points that are 𝑛 units away from the selected point in each of the six adjacent
directions as shown in Fig. 6 (a), at least four of these points must have SDF values greater than the boundary value.
While a point that meets this condition does not have to be in a convex part of the object, there must be points that meet
this condition on the convex portion. This condition ensures that points in the convex part of the object boundary are
chosen. We traverse the SDF to determine the initial positions of all detection points that satisfy the conditions stated
above. Because the SDF is defined in the local coordinate system of the object itself, these detection point positions
should be transformed into the global coordinate system for fast collision detection. Fig. 5 shows the experimental
results of this approach.

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 7 of 15

Real-time Collision Detection between General SDFs

up

down

back

right

left

front

n

out out

out

in

(a) (b)

selected points

n-units neighbors

other voxels

Figure 6: This is a representation of how detection points are selected on the surface of an object. In (a), we can see the
selected point and its neighboring points in six adjacent directions. And if the selected point is on a convex part of the
object’s boundary, the SDF values of most of its neighbors will be greater than the boundary values, as shown in (b). For
different objects, we need to manually adjust the parameter 𝑛 to ensure that the detection points can cover the protrusions
on the object surface.

(c) contact generation

0

b

0

(a) collision-free (b) collision

Figure 7: SDFs collision detection and contact generation using gradient descent. 𝜙𝐴 and 𝜙𝐵 are SDFs. The red point
serves as a detection point and its blue trajectory is visualized as an optimized path to achieve a desired position under
constraints. (a) shows the collision-free scenario while (b) demonstrates the scenario where objects A and B collide. The
process of contact generation is illustrated in (c).

(b)
0.2 0.3 0.4 0.5 0.6

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

1.15
1.10

Analytical calculation
5 line segments
10 line segments
100 line segments
Ours

A

B

(a)
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

1.8

2.0

Analytical calculation
5 line segments
10 line segments
100 line segments
Ours

A

B

0.33 0.34 0.35 0.36 0.37 0.38

0.76

0.77

0.78

0.79

0.80

0.81 Analytical calculation
10 line segments
100 line segments
Ours

(c)

A

(d)
0.35870 0.35875 0.35881 0.35885 0.35890

0.76510

0.76515

0.76520

0.76525

0.76530

0.76535 Analytical calculation
100 line segments
Ours

A

Figure 8: (a) We use analytic computation, line approximation, and our method to compute the line of closest points of
two curves, respectively. (b) Results with approximation error greater than 0.1 using 5 line segments. (c) Results with
approximation error greater than 0.01 using 100 line segments. (d) After a small number of iterations, the error of our
method is less than 10−17. The colored area is the error of line segment approximation. The orange points represent our
method’s detection point positions at each iteration.

4.3. Intersection of SDFs
The problem for the intersection test of SDFs is to determine whether there exists a point 𝐱 in the space that satisfies

both 𝜙𝐴(𝐱) ≤ 0 and 𝜙𝐵(𝐱) ≤ 0.
Assuming that a detection point 𝐱 is located outside of object 𝐴, we project it onto the nearest point within 𝐴,

including the point on the surface. We can easily calculate the closest point on the isosurface where 𝜙𝐴 = 0 for any
point in 3D space due to the advantageous properties of SDFs. As a result, the projection operator 𝑃 is as follows:

𝑃 (𝐱) = argmin
𝐱′∈𝐴

1
2
||𝐱′ − 𝐱||2 = 𝐱 − ∇𝜙𝐴(𝐱)𝜙𝐴(𝐱). (8)

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 8 of 15

Real-time Collision Detection between General SDFs

We update the detection point 𝐱 iteratively along the the gradient of 𝜙𝐵 with a step size 𝑠, subject to the constraint
that 𝐱 stays inside the object 𝐴. The gradient for voxel and neural network representations of SDF can be computed
numerically by querying the SDF values. Similar to other methods using gradient-based iteration (Macklin et al., 2020;
Bridson, 2015), the iterative process is governed by the following formula:

𝐱𝑖+1 = 𝐱𝐢 − 𝑠∇𝜙𝐵(𝐱𝑖), 𝑠.𝑡. 𝜙𝐴(𝐱𝑖+1) ≤ 0. (9)
The constraint is satisfied by performing another projection operation on the predicted position 𝐱𝐢+𝟏, which is outside
of object 𝐴.

Finally, if the detection point 𝐱 moves to the internal region of 𝐵, where it simultaneously satisfies 𝜙𝐴(𝐱) ≤ 0
and 𝜙𝐵(𝐱) ≤ 0, then object 𝐴 and object 𝐵 are considered as in a collision (see Fig. 7). If we are unable to find a
point within both SDFs, as shown in Fig. 7(b), we will restart our search for the next detection point. When all of the
detection points indicate that there is no collision, we conclude that objects 𝐴 and 𝐵 do not intersect. More details can
be found in Algorithm 2.

Algorithm 2: The SDF intersection test algorithm
input : 𝜙𝐴,𝜙𝐵 , the detection point 𝐱
output: An intersection point or the closest point 𝐱𝑖

1 𝐱𝑖 ← 𝐱;
2 while (𝜙𝐴(𝐱𝑖) > 0 or 𝜙𝐵(𝐱𝑖) > 0) and |𝐱𝑖+1 − 𝐱𝑖| > 𝜖 and 𝑁𝑢𝑚𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑠 do
3 if 𝜙𝐴(𝐱𝑖) > 0 then
4 𝐱𝑖+1 ← 𝐱𝑖 − ∇𝜙𝐴(𝐱𝑖)𝜙𝐴(𝐱𝑖);
5 else
6 𝐱𝑖+1 ← 𝐱𝑖 − 𝑠∇𝜙𝐵(𝐱𝑖);
7 if 𝜙𝐴(𝐱𝑖+1) > 0 then
8 𝐱𝑖+1 ← 𝐱𝑖+1 − ∇𝜙𝐴(𝐱𝑖+1)𝜙𝐴(𝐱𝑖+1);
9 𝐱𝑖 ← 𝐱𝑖+1;

4.4. Contact Generation
When the collision between 𝐴 and 𝐵 is detected, we generate the contact information including contact points,

contact normals, and contact depth. We define the contact points as 𝐩𝑎 and 𝐩𝑏. 𝐩𝑎 is the deepest point on the surface
of 𝐴 that penetrates into 𝐵. 𝐩𝑏 is the deepest point on the surface of 𝐵 that penetrates into 𝐴. Then the contact depth
can be easily obtained by querying 𝜙𝐴(𝐩𝑏) and 𝜙𝐵(𝐩𝑎). Contact normals are defined as 𝐧𝑎 and 𝐧𝑏 which are the best
directions to separate colliders:

𝐧𝑎 = −∇𝜙𝐴(𝐩𝑎),
𝐧𝑏 = −∇𝜙𝐵(𝐩𝑏).

(10)
The projected gradient descent method is used to find contact points using the intersection point found in Section 4.3
as the starting point 𝐱0, as shown in Fig. 7 (c). In contrast to Algorithm 2, 𝐩𝑎 and 𝐩𝑏 can be uniquely determined
with precise positions during the contact generation process. Specifically, we compute the next point position along
the gradient of 𝐴’s SDF at each iteration, with the constraint that the point lies inside 𝐵. The iterative process ends
when the step size of the solver falls below a user-defined tolerance 𝜖, yielding the convergence point 𝐩𝑎. Similarly, the
position of 𝐩𝑏 can be determined. Algorithm 3 contains more information. The step size must be manually adjusted
for various scenarios. A step size that is too large can result in frequent detection failures. A too-small step size, on
the other hand, can result in excessively long detection times. We begin the adjustment process in experiments with a
step size of one unit length.

5. Results
We implemented our method on a PC with an AMD Ryzen 5800X CPU and Nvidia RTX 2060 GPU. SDFs are rep-

resented by 3D voxel grids and neural networks(Park et al., 2019). The analytic distance functions are based on (Quilez,
2019). All experiments are shown in the video.
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 9 of 15

Real-time Collision Detection between General SDFs

Algorithm 3: Contact generation
input : 𝜙𝐴, 𝜙𝐵 , the starting point 𝐱0
output: 𝐩𝑎, 𝐩𝑏, 𝐧𝑎, 𝐧𝑏

1 𝐱𝑖 ← 𝐱0;
2 while 𝜙𝐴(𝐱𝑖) ≤ 0 and 𝜙𝐵(𝐱𝑖) ≤ 0 and |𝐱𝑖+1 − 𝐱𝑖| > 𝜖 and 𝑁𝑢𝑚𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑠 do
3 𝐱𝑖+1 ← 𝐱𝑖 − 𝑠∇𝜙𝐵(𝐱𝑖);
4 if 𝜙𝐴(𝐱𝑖+1) > 0 then
5 𝐱𝑖+1 ← 𝐱𝑖+1 − ∇𝜙𝐴(𝐱𝑖+1)𝜙𝐴(𝐱𝑖+1);
6 𝐱𝑖 ← 𝐱𝑖+1;
7 𝐩𝑎 ← 𝐱𝑖;
8 𝐧𝑎 ← ∇𝜙𝐵(𝐩𝑎);
9 𝐱𝑖 ← 𝐱0;

10 while 𝜙𝐴(𝐱𝑖) ≤ 0 and 𝜙𝐵(𝐱𝑖) ≤ 0 and |𝐱𝑖+1 − 𝐱𝑖| > 𝜖 and 𝑁𝑢𝑚𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑠 do
11 𝐱𝑖+1 ← 𝐱𝑖 − 𝑠∇𝜙𝐴(𝐱𝑖);
12 if 𝜙𝐵(𝐱𝑖+1) > 0 then
13 𝐱𝑖+1 ← 𝐱𝑖+1 − ∇𝜙𝐵(𝐱𝑖+1)𝜙𝐵(𝐱𝑖+1);
14 𝐱𝑖 ← 𝐱𝑖+1;
15 𝐩𝑏 ← 𝐱𝑖;
16 𝐧𝑏 ← ∇𝜙𝐴(𝐩𝑏);

Figure 9: We can obtain precise collision data between spheres and cubes. Each frame’s contact points are recorded as
an image. The red points on the bottom left are accurate contact points. Our result is represented by the distribution of
green points on the bottom right.

5.1. Detection Precision
Using two objects 𝐴 and 𝐵 with smooth curved boundaries, we compare our method to the analytic computation

method and the line approximation method in Fig. 8. To determine their shortest distance, an analytical computation is
performed. The curves are approximated by 5, 10, and 100 line segments, respectively, to mimic existing discretization
strategies. We can calculate the approximation error by comparing the shortest distances computed from these approx-
imations to the analytical result. Although increasing the number of line segments produces more accurate results, it
incurs a higher computational cost. In our experiments, the computational cost of 5 line segments is 0.0050∼0.0053
milliseconds, and the computational cost of 100 line segments is 1.2457∼1.5063 milliseconds. There is a significant
difference between analytical and experimental results. Using analytic distance functions representation, on the other
hand, can produce more accurate results in a more efficient manner. We choose a detection point within 𝐴 and use
our method to move it to the position closest to 𝐵 with a fixed step size 𝑠 = 0.5. Our method significantly improved
precision and efficiency, lowering the error rate to 10−17 after only 89 iterations.
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 10 of 15

Real-time Collision Detection between General SDFs

Frames

Er
ro

r

Er
ro

r

Frames
(a) (b)

Figure 10: (a) The figure shows the mean distance between the detected contact point positions and their ground truth
values for each frame in the cube-sphere scenario. The maximum size of an object’s OBB is 2.54 units. (b) The mean
distance of the contact point positions between our method and the mesh-SDF method (Macklin et al., 2020) for each
frame in the shell-rock scenario. The maximum size of the shell’s OBB is 5.56 units.

Figure 11: We design two scenarios, bunny-cone and armadillo-cylinder, to compare different methods. In the mesh-based
methods, the armadillo has 9,994 triangles and bunny has 5,880 triangles. In our proposed method, the cone and cylinder
are represented using analytical distance functions, the discrete SDFs are stored in 2533 grids, and the continuous SDFs
are encoded by multilayer perceptrons (Davies et al., 2020). The results of the SDF decomposition are displayed in the
top right subplot.

We compare our results to the exact results in a 3D cube-sphere collision scenario to further validate the accuracy
of our proposed method. Because cubes and spheres are regular geometric shapes, all collision information is exact.
To calculate the positions of all collision points and record the trajectories of the objects, we use the Separating Axis
Theorem (SAT) (Huynh, 2009) and CCD algorithms (Redon et al., 2002). We compute the contact point positions using
our proposed SDF-based gradient descent method, which uses analytic distance functions to represent the sphere and
cubes in each frame. The entire process is visualized in Fig. 9. In this experiment, we set 𝜖 to 10−5 and calculated the
average difference between the contact point positions and the exact results in each frame, as shown in Fig. 10 (a). In
theory, as long as 𝜖 is small enough, our results can approach the exact solution infinitely closely.
5.2. Time Performance

We compare the time efficiency of collision detection algorithms in two scenarios: bunny-cone and armadillo-
cylinder in this experiment. The fully mesh-based algorithm (Coumans and Bai, 2016–2021), the algorithm proposed
in (Macklin et al., 2020) for collision detection between triangle meshes and SDF, and our own algorithm were all
evaluated. The contact point trajectory during the process is visualized in Fig. 12, with all collisions in sharp areas
accurately detected. Triangle meshes are used in collision detection between triangle meshes and SDF to represent
bunnies and armadillos, whereas analytical distance functions are used to represent cylindrical and conical objects.
Bunnies and armadillos are represented in our proposed method by either a discrete SDF stored in voxel grids or a
continuous SDF encoded by a neural network, while other objects in the scene are represented by analytical distance
functions.

The comparison of detection times per frame for various collision detection algorithms (Coumans and Bai, 2016–
2021; Macklin et al., 2020), all of which are run on a single thread, is shown in Fig. 13. Despite the use of culling,
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 11 of 15

Real-time Collision Detection between General SDFs

(a) (c) (d)(b)

Figure 12: Comparison of the contact point distributions of three different collision detection methods: (a) the fully
mesh-based method, (b) the mesh-SDF method, and (c) our proposed method. Images (d) are the results of our method
in the absence of SDF decomposition.

0

5

10

15

20

25

30

35

40

45

100 120 140 1600 20 40 60 80

Ours (voxel grids) Ours (nerual networks) Ours (without Bounding boxes)
Triangle Mesh Triangle Mesh and SDF

Frames

Ti
m

e(
m

s)

Ti
m

e(
m

s)

Frames

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900

Figure 13: Time performance for different collision detection methods between bunnies and cones (left) and armadillos
and cylinders (right).

Table 1
Objects information and memory useage compartion between meshes and SDFs.

Scene Triangle Num Voxel Num Step Size Memory Useage
Triangle Mesh Triangle Mesh and SDF(voxel) Ours (voxel) Ours (neural networks)

Bunny 5880 2563 0.005 468MB 528MB 513MB 463MB
Armadilo 9994 2563 0.01 465MB 774MB 755MB 468MB

the completely mesh-based method is computationally expensive for dynamic scenarios with high-precision models.
This is due to the fact that each frame during sustained contact between objects requires the processing of intersections
of numerous triangles. Due to the time-consuming nature of performing the local optimization for each triangle, the
mesh-SDF collision detection method is even less efficient than the completely meshed-based method without the
use of the GPU AABB tree. Furthermore, neural network-encoded SDFs necessitate more calculations for distance
queries, resulting in lower detection efficiency than SDFs discretely stored within voxel grids with 𝑂(1) query time
complexity. Their advantage, however, is that they ensure SDF continuity while significantly reducing memory usage.

5.3. Ablation Study
Preprocessing begins with decomposing the SDF into multiple parts and generating corresponding OBBs. Calcu-

lating the intersection region of OBBs not only reduces the gradient descent search space but also guides the detection
point selection. We conduct an ablation study to show how the OBB generated for each object component improves
collision detection accuracy and speed.

Fig. 11 shows the decomposition of bunny and armadillo models. In contrast, we generate only one OBB for the
Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 12 of 15

Real-time Collision Detection between General SDFs

entire model and then select detection points from the intersection region of the OBBs. The final positions of the
contact points are shown in Fig. 12. In the absence of SDF decomposition, the generated contact point error increases
significantly, resulting in a large number of false and missed contacts.

The missed detections can be attributed to the two factors listed below. To begin, detection points in the complex
search space are prone to becoming trapped in local optima, resulting in failure to converge towards the true intersection
regions of SDFs. Second, generating the intersection area with only two OBBs can reduce the number of detection
points.

Although increasing the depth of the octree can avoid these problems, it comes with a significant increase in colli-
sion detection time. With a fixed octree depth, not using SDF decomposition can also reduce algorithm efficiency, as
shown by the blue curve in Fig. 13. It becomes more obvious as model complexity increases, because larger intersection
regions of OBBs necessitate more iterations for optimizing detection points via gradient descent.
5.4. The Optimization of GPU Parallelization

Since the gradient descent process of each detection point is independent, our method can be parallellized for which
we use Nvidia wrap (Macklin, 2022). We compare the parallelization performance of our method to that of (Macklin
et al., 2020) in a shell-rock collision scenario.

To ensure collision detection accuracy, we use a high-poly model with 1,300,000 triangles to represent the shell
and 620,992 triangles to represent the rock in collision detection. In addition, the SDF resolution is 10003.

A shell, unlike the bunny and armadillo, lacks distinct structural features. Decomposing it into multiple convex
bodies using OBBs is extremely difficult due to the presence of various sized protrusions on its surface. As a result,
we chose 484 detection points on the shell and 384 detection points on the rock using the algorithm described in
Section 4.2. During the narrow phase, all detection points begin simultaneously searching for the collision region by
moving along the gradient of SDFs. In our collision detection method, the average time of gradient descent per frame
is 0.22ms.

For the same scene, we used the SDF-mesh collision detection method and collected collision detection data. The
time of gradient descent on object surfaces is 0.26ms per frame with parallel computing. As shown in Fig. 10 (b), the
error in contact information generated by both methods is calculated for each frame. According to the statistical results,
the difference in contact information generated by the two methods is usually less than 0.05 unit, with a maximum of
0.064 unit. However, both methods missed some collisions that the other method captured. We discovered that these
points are precisely on the boundary of the collision judgment condition after further investigation. As a result, we
believe that this discrepancy is caused by an error between SDF and mesh.

6. Conclusion and Limitation
In this paper, we discussed the SDF-SDF collision method and proposed collision detection method between SDF-

SDF in different representation. For analytic Distance Function, we employed interval arithmetic for intersection
detection. For general SDFs, We incorporate an unsupervised cuboid shape abstract neural network into the SDF
decomposition task. SDF decomposition can aid in improving detection time performance and reducing SDF memory
usage. SDF decomposition, on the other hand, is useful in avoiding local minima. In the detection of collisions, we
begin by using an octree to locate the intersection region of two OBBs. The detection points are then moved along the
gradient of the SDF to find SDF intersection regions. Finally, we find contacts by looking for the deepest points and
gradient directions.

Our method has limitations: (1) The local optimum is still not completely avoidable. We need a large number of
detection points for multiple detections, which causes a lot of resource consumption. (2) The query efficiency of SDFs
varies depending on the representation. The query efficiency of voxels and analytic distance functions is high. For
neural implicit surfaces, we need develop more efficient methods. (3) The method’s parameters, such as the depth of
the octree, the step size of the detection point movement, and so on, must be manually adjusted according to the scene.
There is currently no good automated method for calculating it.

It is worth noting that our method complements the mesh-mesh and SDF-mesh methods. When the entire scene is
represented by SDFs (Quilez, 2019), our method has advantages. In the future, we will investigate how SDFs can be
used in both rendering and physically based animation in order to realize the application of SDFs in a broader range
of scenarios.

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 13 of 15

Real-time Collision Detection between General SDFs

Acknowledgements
Xiaogang Jin was supported by Key R&D Program of Zhejiang (No. 2024C01069), the National Natural Science

Foundation of China (Grant No. 62036010), and the FDCT under Grant 0002/2023/AKP.

References
Bridson, R., 2015. Fluid simulation for computer graphics. AK Peters/CRC Press.
Brozos-Vázquez, M., Pereira-Sáez, M.J., Rodríguez-Raposo, A.B., Souto-Salorio, M.J., Tarrío-Tobar, A.D., 2022. Contact detection between a

small ellipsoid and another quadric. Computer Aided Geometric Design 98, 102136.
Brozos-Vázquez, M., Pereira-Sáez, M.J., Souto-Salorio, M., Tarrío-Tobar, A.D., 2019. Classification of the relative positions between a small

ellipsoid and an elliptic paraboloid. Computer Aided Geometric Design 72, 34–48.
Chen, R., Gotsman, C., Hormann, K., 2018. Path planning with divergence-based distance functions. Computer Aided Geometric Design 66, 52–74.
Chen, Z., Zhang, H., 2019. Learning implicit fields for generative shape modeling, in: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 5939–5948.
Chibane, J., Alldieck, T., Pons-Moll, G., 2020. Implicit functions in feature space for 3d shape reconstruction and completion, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6970–6981.
Choi, Y.K., Wang, W., Liu, Y., Kim, M.S., 2006. Continuous collision detection for two moving elliptic disks. IEEE Transactions on Robotics 22,

213–224.
Coumans, E., Bai, Y., 2016–2021. Bullet 3 physics sdk ((bullet physics library). http://pybullet.org.
Davies, T., Nowrouzezahrai, D., Jacobson, A., 2020. On the effectiveness of weight-encoded neural implicit 3d shapes. arXiv preprint

arXiv:2009.09808 .
Driess, D., Ha, J.S., Toussaint, M., Tedrake, R., 2022. Learning models as functionals of signed-distance fields for manipulation planning, in:

Conference on Robot Learning, PMLR. pp. 245–255.
Du, P., Liu, E.S., Suzumura, T., 2017. Parallel continuous collision detection for high-performance gpu cluster, in: Proceedings of the 21st ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 1–7.
Dube, C., Tsoeu, M., Tapson, J., 2011. A model of the humanoid body for self collision detection based on elliptical capsules, in: 2011 IEEE

International Conference on Robotics and Biomimetics, IEEE. pp. 2397–2402.
Ferguson, Z., Li, M., Schneider, T., Gil-Ureta, F., Langlois, T., Jiang, C., Zorin, D., Kaufman, D.M., Panozzo, D., 2021. Intersection-free rigid

body dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, Article No.: 183.
Fernández-Layos, P.L.A., Merchante, L.F., 2024. Convex body collision detection using the signed distance function. Computer-Aided Design ,

103685.
Flöry, S., Hofer, M., 2010. Surface fitting and registration of point clouds using approximations of the unsigned distance function. Computer Aided

Geometric Design 27, 60–77.
Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R., 2000. Adaptively sampled distance fields: A general representation of shape for computer

graphics, in: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 249–254.
Fuhrmann, A., Sobotka, G., Groß, C., 2003. Distance fields for rapid collision detection in physically based modeling, in: Proceedings of GraphiCon,

pp. 58–65.
Gilbert, E.G., Johnson, D.W., Keerthi, S.S., 1988. A fast procedure for computing the distance between complex objects in three-dimensional space.

IEEE Journal on Robotics and Automation 4, 193–203.
Guendelman, E., Bridson, R., Fedkiw, R., 2003. Nonconvex rigid bodies with stacking. ACM Transactions on Graphics (TOG) 22, 871–878.
Huynh, J., 2009. Separating axis theorem for oriented bounding boxes. https://jkh.me/files/tutorials/Separating%20Axis%

20Theorem%20for%20Oriented%20Bounding%20Boxes.pdf.
Jia, X., Choi, Y.K., Mourrain, B., Wang, W., 2011. An algebraic approach to continuous collision detection for ellipsoids. Computer Aided

Geometric Design 28, 164–176.
Jiang, Y., Ji, D., Han, Z., Zwicker, M., 2020. Sdfdiff: Differentiable rendering of signed distance fields for 3d shape optimization, in: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1251–1261.
Ketchel, J., Larochelle, P., 2006. Collision detection of cylindrical rigid bodies for motion planning, in: Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., IEEE. pp. 1530–1535.
Koschier, D., Deul, C., Brand, M., Bender, J., 2017. An hp-adaptive discretization algorithm for signed distance field generation. IEEE Transactions

on Visualization and Computer Graphics 23, 2208–2221.
Laidlaw, D.H., Trumbore, W.B., Hughes, J.F., 1986. Constructive solid geometry for polyhedral objects, in: Proceedings of the 13th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 161–170.
Li, T., Wen, X., Liu, Y.S., Su, H., Han, Z., 2022. Learning deep implicit functions for 3d shapes with dynamic code clouds, in: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12840–12850.
Macklin, M., 2022. Warp: A high-performance python framework for gpu simulation and graphics. https://github.com/nvidia/warp.

NVIDIA GPU Technology Conference (GTC).
Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Corse, Z., 2020. Local optimization for robust signed distance field collision.

Proceedings of the ACM on Computer Graphics and Interactive Techniques 3, 1–17.
Mamou, K., Lengyel, E., Peters, A., 2016. Volumetric hierarchical approximate convex decomposition, in: Game Engine Gems 3. AK Peters, pp.

141–158.
Montanari, M., Petrinic, N., Barbieri, E., 2017. Improving the gjk algorithm for faster and more reliable distance queries between convex objects.

ACM Transactions on Graphics (TOG) 36, 1–17.

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 14 of 15

http://pybullet.org
https://jkh.me/files/tutorials/Separating%20Axis%20Theorem%20for%20Oriented%20Bounding%20Boxes.pdf
https://jkh.me/files/tutorials/Separating%20Axis%20Theorem%20for%20Oriented%20Bounding%20Boxes.pdf
https://github.com/nvidia/warp

Real-time Collision Detection between General SDFs

Moore, R.E., Yang, C., 1996. Interval Analysis. volume 2. Prentice-Hall Englewood Cliffs, NJ.
Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., Mukadam, M., 2022. isdf: Real-time neural signed distance fields for robot

perception. arXiv preprint arXiv:2204.02296 .
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S., 2019. Deepsdf: Learning continuous signed distance functions for shape repre-

sentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174.
Quilez, I., 2013. Shadertoy. https://www.shadertoy.com/user/iq/.
Quilez, I., 2019. Happy jumping. https://www.shadertoy.com/view/3lsSzf.
Redon, S., Kheddar, A., Coquillart, S., 2002. Fast continuous collision detection between rigid bodies, in: Computer graphics forum, Wiley Online

Library. pp. 279–287.
Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., Maji, S., 2018. Csgnet: Neural shape parser for constructive solid geometry, in: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5515–5523.
Sharp, N., Jacobson, A., 2022. Spelunking the deep: Guaranteed queries on general neural implicit surfaces via range analysis. ACM Transactions

on Graphics (TOG) 41, 1–16.
Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G., 2020. Metasdf: Meta-learning signed distance functions. Advances in Neural

Information Processing Systems 33, 10136–10147.
Stier, N., Rich, A., Sen, P., Höllerer, T., 2021. Vortx: Volumetric 3d reconstruction with transformers for voxelwise view selection and fusion, in:

2021 International Conference on 3D Vision (3DV), IEEE Computer Society. pp. 320–330.
Stol, J., De Figueiredo, L.H., 1997. Self-validated numerical methods and applications, in: Monograph for 21st Brazilian Mathematics Colloquium,

IMPA, Rio de Janeiro. Citeseer.
Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Jacobson, A., McGuire, M., Fidler, S., 2021. Neural geometric level of

detail: Real-time rendering with implicit 3d shapes, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11358–11367.

Tan, Q., Zhou, Y., Wang, T., Ceylan, D., Sun, X., Manocha, D., 2022. A repulsive force unit for garment collision handling in neural networks, in:
European Conference on Computer Vision, Springer. pp. 451–467.

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N.,
Strasser, W., et al., 2005. Collision detection for deformable objects. Computer Graphics Forum 24, 61–81.

Wang, B., Ferguson, Z., Schneider, T., Jiang, X., Attene, M., Panozzo, D., 2021. A large-scale benchmark and an inclusion-based algorithm for
continuous collision detection. ACM Transactions on Graphics (TOG) 40, 1–16.

Wang, H., 2014. Defending continuous collision detection against errors. ACM Transactions on Graphics (TOG) 33, 1–10.
Xu, H., Barbic, J., 2014. Continuous Collision Detection between Points and Signed Distance Fields, in: Bender, J., Duriez, C., Jaillet, F., Zachmann,

G. (Eds.), Workshop on Virtual Reality Interaction and Physical Simulation, The Eurographics Association.
Xu, H., Barbič, J., 2016. 6-dof haptic rendering using continuous collision detection between points and signed distance fields. IEEE Transactions

on Haptics 10, 151–161.
Yang, K., Chen, X., 2021. Unsupervised learning for cuboid shape abstraction via joint segmentation from point clouds. ACM Transactions on

Graphics (TOG) 40, 1–11.
Yao, G., Wu, H., Yuan, Y., Zhou, K., 2021. Dd-nerf: Double-diffusion neural radiance field as a generalizable implicit body representation. arXiv

preprint arXiv:2112.12390 .
Zesch, R.S., Modi, V., Sueda, S., Levin, D.I., 2023. Neural collision fields for triangle primitives, in: SIGGRAPH Asia 2023 Conference Papers,

pp. 1–10.
Zheng, C., James, D.L., 2012. Energy-based self-collision culling for arbitrary mesh deformations. ACM Transactions on Graphics (TOG) 31,

1–12.

Pengfei Liu, Yuqing Zhang et al.: Preprint submitted to Elsevier Page 15 of 15

https://www.shadertoy.com/user/iq/
https://www.shadertoy.com/view/3lsSzf

